Added tail area calculations, some metric conversions, bending moments, and max stress calcs for balsa spars
This commit is contained in:
parent
9de36e07e5
commit
632c6bc546
1 changed files with 56 additions and 6 deletions
|
|
@ -41,16 +41,16 @@ plt.grid(True)
|
|||
#plt.show()
|
||||
|
||||
print("Raymer's Aircraft Calculations (IMPERIAL UNITS)\n")
|
||||
print("Weight Estimation: %0.4f lbs" % imperial_estimates[-1])
|
||||
print("Weight Estimation (mass): %0.4f lbs" % imperial_estimates[-1])
|
||||
|
||||
# Wing loading
|
||||
typical_weight_area_ratio = 6 # Historical sailplane ratio
|
||||
print("Typical Weight Area Ratio: %0.4f lbs/ft^2" % typical_weight_area_ratio)
|
||||
print("Typical Weight Area Ratio: %0.4f lbs/ft²" % typical_weight_area_ratio)
|
||||
|
||||
# To find area of the wings we must work backwards (ratio = weight/area)
|
||||
# Area of wings
|
||||
wing_area = imperial_estimates[-1] / typical_weight_area_ratio
|
||||
print("Main Wing Area: %0.4f ft^2" % wing_area)
|
||||
print("Main Wing Area: %0.4f ft²" % wing_area)
|
||||
|
||||
# L/D Ratio
|
||||
ld_ratio = 7.5 / 1.5
|
||||
|
|
@ -73,8 +73,58 @@ fuselage_length = 0.86 * imperial_estimates[-1]**0.48
|
|||
print("Fuselage Length %0.4f ft" % fuselage_length)
|
||||
|
||||
# Tail Positioning (Moment arm)
|
||||
tail_poisitioning = fuselage_length * 0.65
|
||||
print("Tail Positioning (Moment arm location) %0.4f ft" % tail_poisitioning)
|
||||
tail_position = fuselage_length * 0.65
|
||||
print("Tail Positioning (Moment arm location) %0.4f ft" % tail_position)
|
||||
|
||||
# Tail Dimensions
|
||||
# Vertical Tail Area
|
||||
C_VT = 0.02 # Assumed constant (sail plane, raymers)
|
||||
vertical_tail_area = C_VT * ((wing_span * wing_area) / tail_position)
|
||||
print("Vertical Tail Area: {:.4f} ft²".format(vertical_tail_area))
|
||||
|
||||
# Horizontal Tail Area
|
||||
C_HT = 0.5 # Assumed constant (sail plane, raymers)
|
||||
horizontal_tail_area = C_HT * ((chord_length * wing_area) / tail_position)
|
||||
print("Horizontal Tail Area: {:.4f} ft²\n".format(horizontal_tail_area))
|
||||
|
||||
|
||||
# Convert everything to metric
|
||||
|
||||
print("End of imperial numbers (THANK THE LORD!)\n")
|
||||
|
||||
print("Weight Estimation (mass): %0.4f kg" % (metric_estimates[-1]*(10**-3)))
|
||||
|
||||
# Total Lift Force
|
||||
lift_force_total = (metric_estimates[-1]*(10**-3)) * 9.81
|
||||
#lift_force_per_ft = lift_force_total / wing_span
|
||||
#lift_force_per_wing_per_ft = lift_force_per_ft / 2
|
||||
print("Total Lift Force: {:.4f} N\n".format(lift_force_total))
|
||||
#print("Lift Force per unit length: {:.4f} lbf/ft".format(lift_force_per_ft))
|
||||
#print("Lift Force per unit length (1 wing): {:.4f} lbf/ft".format(lift_force_per_wing_per_ft))
|
||||
|
||||
# Bending Moments
|
||||
|
||||
number_of_wings = 2
|
||||
|
||||
print("BENDING MOMENTS\n")
|
||||
wing_span_metric = wing_span * 0.3048
|
||||
print("Wing Span: {:.4f} m".format(wing_span_metric))
|
||||
|
||||
# Bending Moment at Wing Root
|
||||
bending_moment_wing = (lift_force_total / number_of_wings) * (wing_span_metric / 4)
|
||||
print(f"Bending Moment at of 1 Wing from root: {bending_moment_wing:.4f} Nm\n")
|
||||
|
||||
# Max Stress Calcs
|
||||
|
||||
# 4mm Spars
|
||||
area_moment_inertia = ((0.004) * (0.004**3))/12
|
||||
print(f"Second moment of inertia for 4mm: {area_moment_inertia} m^4")
|
||||
|
||||
max_stress = bending_moment_wing * ((2*(10**-3)) / area_moment_inertia)
|
||||
print(f"Max Stress for 4mm spar: {max_stress:.4f} Pa or {max_stress/1000000:.4f} MPa")
|
||||
|
||||
# 6mm Spars
|
||||
area_moment_inertia = ((0.006) * (0.006**3))/12
|
||||
print(f"Second moment of inertia for 6mm: {area_moment_inertia} m^4")
|
||||
|
||||
max_stress = bending_moment_wing * ((3*(10**-3)) / area_moment_inertia)
|
||||
print(f"Max Stress for 6mm spar: {max_stress:.4f} Pa or {max_stress/1000000:.4f} MPa")
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue